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We consider geometric variational problems for a functional defined on a curve in a three-dimensional space.
The functional is assumed to be written in a form invariant under the group of Euclidean motions. We present
the Euler-Lagrange equations as equilibrium equations for the internal force and moment. Examples are
discussed to illustrate our approach. This form of the equations particularly serves to promote the study of
biofilaments and nanofilaments.
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I. INTRODUCTION

Ever improving experimental techniques in biophysics
and nanotechnology have created great interest in one-
dimensional continuum models for such slender structures as
DNA, proteins, nanotubes, and other biofilaments and
nanofilaments �1–4�. In addition, such models continue to be
used in engineering applications to study large statical defor-
mations of one-dimensional elastic structures �e.g., cables,
pipelines, and textile yarns� �5,6�. Vortex filaments provide
another target for the application of one-dimensional con-
tinuum models �7,8�.

Often these models give rise to variational problems on
curves in a form that is invariant under Euclidean motions.
The corresponding �Euler-Lagrange� equilibrium equations
are usually derived ad hoc. To be sure, there is a general
theory of Euler-Lagrange equations for invariant variational
problems �9,10�, but it is usually expressed in abstract geo-
metrical form and does not seem to be widely known in the
physics and mechanics literature. Moreover, the equations it
yields are naturally expressed as high-order ordinary differ-
ential equations �ODEs�, which are neither necessarily con-
venient for further analysis or numerical solution nor helpful
in providing insight into the problem under consideration.

Here we show that Anderson’s Euler-Lagrange equations
of �9� for variational problems on curves can be written in
the form of �first-order� balance equations for the internal
forces and moments in the structure plus equations that can
be interpreted as constitutive relations. We believe that this
form of the equations is better suited to further analysis, in
particular, in problems of rods and filaments subjected to end
loads �as, e.g., in single-molecule experiments�. We demon-
strate the usefulness and wide applicability of the equations
by a series of variational problems.

II. EQUATIONS FOR INVARIANT VARIATIONAL
PROBLEMS

Consider the variational problem on a smooth curve C
= �r�s��R3 ,s� �0,L�� for the integral

�
0

L

f�s,r�s�,��s��ds . �1�

Here ��s��Rn collects possible additional functions defined
on the curve. We assume that the functional f is invariant
under reparametrizations of the curve C and invariant under
the group of Euclidean motions of R3. Then the functional
can be expressed in terms of the Euclidean invariant proper-
ties of the curve C, i.e., its curvature and torsion. For such
problems, it is possible to write down the Euler-Lagrange
equations directly in terms of the geometric invariants, i.e.,
avoiding coordinates r �10�. The following proposition �first
briefly announced in �11� in a slightly less general form�
gives the equations in the form of force and moment balance
equations. The result is a natural convergence of lines of
work in mechanics, physics, and mathematics that can be
traced back to Sadowsky �12�, Langer and Singer �7�, Ca-
povilla et al. �13� and, in more abstract form, to the theory of
the invariant variational bicomplex �9,10,14�.

Proposition. Let r�s� ,s� �0,L� be a sufficiently smooth
regular curve in R3 with unit tangent vector r��s�= t�s�, cur-
vature ��s�, and torsion ��s�. Here and in the following, the
prime denotes differentiation with respect to arclength s. In
addition, let ��s� be a smooth function of arclength. Then the
Euler-Lagrange equations for the variational problem

�
0

L

f��,�,�,��,��,��,��,��,��, . . . ,��p�,��q�,��r��ds �2�

can be presented in the form of �a� balance equations for the
components of the internal force F= �Ft ,Fn ,Fb�T and mo-
ment M= �Mt ,Mn ,Mb�T expressed in the Frenet frame
�t ,n ,b� �tangent, principal normal, and binormal�,

F� + � � F = 0, M� + � � M + t � F = 0 , �3�

where �= �� ,0 ,��T is the strain �Darboux� vector in the
Frenet frame, �b� the “constitutive” equations

Mb = E��f�, Mt = E��f� , �4�

and �c� the equations

E�i
�f� = 0, i = 1,2, . . . ,n , �5�

with E� as the Euler-Lagrange operator for the variable �
defined by E��h�=��h− ����h��+ ����h��−. . ..

Note. We adopt the notation that for any vector v�R3 the
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triple of components �vt ,vn ,vb�= �v · t ,v ·n ,v ·b� is denoted
by the sans-serif symbol v. Equation �3� in vectorial form
reads as F�=0, M�+r��F=0, the familiar balance equa-
tions for a one-dimensional elastic continuum �15�. It follows
that F and M+r�F are constant vectors in space and that
�F� and F ·M are first integrals.

Proof. It was proven by Anderson �9� by performing the
variation of the curve that the Euler-Lagrange equations for
� and � for the problem in Eq. �2� are given by

�H + ��2 − �2�E� + E�� + 2��E� + 	��� − 2���

�2 
E�� + 2
�

�
E��

= 0, �6�

��E� + 2�E�� − ��E� + 	�2��2 − �2� − 2��2 + ���

�3 
E�� + 2
��

�2E��

−
1

�
E�� = 0, �7�

where H=H�f� is the Hamiltonian

H�f� = − f + �
p�i�j�0

��i−j��− 1� j d j

dsj	 � f

���i�

+ �

q�i�j�0
��i−j��− 1� j d j

dsj	 � f

���i�

+ �

k=1

n

�
r�i�j�0

�k
�i−j��− 1� j d j

dsj	 � f

��k
�i�
 . �8�

Equation �5� is nothing but the set of standard Euler-
Lagrange equations for the functions �i. We now show that
Eqs. �3� and �4� are simply a rearrangement of Eqs. �6� and
�7�. Consider first the equation for the moment in Eq. �3� and
rewrite it in component form,

Mt� − �Mn = 0, �9�

Mn� − �Mb + �Mt = Fb, �10�

Mb� + �Mn = − Fn. �11�

Equation �9� with the help of the second equation in Eq. �4�
allows us to express the principal normal component as

Mn = E��/� . �12�

This component of the moment, together with the two com-
ponents in Eq. �4�, we insert into Eqs. �10� and �11� to find

Fn = − E�� −
�

�
E��, �13�

Fb = − �E� + �E� + 	E��

�

�

. �14�

Next, we turn to the force equation in Eq. �3�, which in
component form reads as

Ft� − �Fn = 0, �15�

Fn� − �Fb + �Ft = 0, �16�

Fb� + �Fn = 0. �17�

Now, it follows directly from Eq. �8� that

H� = − ��E� − ��E� �18�

�here we have used that E�=0, by Eq. �5��, and if we com-
bine Eq. �18� with Eqs. �15� and �13� and integrate, we ob-
tain

Ft = − H − �E� − �E� + const. �19�

The integration constant is fixed by the boundary conditions
through the integral �F� and can be absorbed into the Hamil-
tonian H. This defines all the force and moment components,
and the two equations that have not been used yet �Eqs. �16�
and �17��, after substitution of the force components from
Eqs. �13�, �14�, and �19�, yield Eqs. �6� and �7�.

It is clear that the above steps can be carried out in the
opposite direction, i.e., by formally introducing new vari-
ables Ft, Fn, Fb, Mt, Mn, and Mb according to the above
expressions one can write Eqs. �6� and �7� as a first-order
system. Therefore, Eqs. �3� and �4� are equivalent to Eqs. �6�
and �7�. �

A few remarks are in order:
�i� Equations �3� and �4� can be thought of as arising in

two steps. In the first step, f is viewed as a function of
independent variables � and �, and Eq. �4� are the classical
Euler-Lagrange equations with Mb and Mt playing the role of
generalized forces. The order of derivatives in the operators
E� and E� is determined by the order of derivatives of � and
� appearing in f . The second step then is to realize that � and
� are not arbitrary variables, but in fact the curvature and
torsion of a space curve. Equation �3� or equivalently Eqs.
�6� and �7� are then the result of expressing the variations of
� and � in terms of variations of the curve r. Since curvature
is expressed as the second derivative of r and torsion as the
third derivative of r, Anderson’s equations involve deriva-
tives up to order 2 in E� and up to order 3 in E�. The balance
equations in Eq. �3� are a rewrite of these equations as a
first-order system. The components of M couple the equa-
tions of step one to those of step two.

�ii� The reason for calling Eq. �4� constitutive equations is
that it is these equations that contain the physics of the prob-
lem �the balance equations in Eq. �3� do not depend on f
explicitly�. Writing the Euler-Lagrange equations in the form
of Eqs. �3�–�5� is a way of extracting constitutive equations
from the functional f . Mathematically, Eq. �4� is best viewed
as equations for � and �, although they need not be resolved
for the highest derivatives of these variables.

�iii� Equivalents of Eqs. �6� and �7� have been derived
many times in the literature for particular applications. Ex-
amples include the isotropic Kirchhoff rod �7�, the Helfrich
rod �16� �corrected in �17��, piezoelectric nanobelts �18�,
magnetic vortex filaments �8�, functionals that involve either
curvature or torsion or both �13�, a functional that depends
on curvature only �1�, the Sadowsky functional for a narrow
developable strip �19�, a functional that depends on �, �, and
their first derivatives �20�, a functional that involves �, �, �1,
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and �1� �2�, etc. However, the explosion of terms that occurs
when E� and E� are substituted makes Eqs. �6� and �7� not
particularly practical either for analytical or numerical study
�for all but the very simplest functionals f�.

�iv� It may happen that the right-hand sides in Eq. �4�
have a simpler form in some other variables and accordingly
we may prefer to rewrite Eq. �4� �and Eq. �5�� in these new
terms. Let the transformation be given by

	 = 	��,�,�,��,��,��,��,��,��, . . .� ,

	�i� =
d�i�	

ds�i� , i = 1,2, . . . ,


 = 
��,�,�,��,��,��,��,��,��, . . .� ,


�i� =
d�i�


ds�i� , i = 1,2, . . . .

Then the Euler-Lagrange operators are transformed by
�21�

E��f� = �
i=0

�

�− 1�i di

dsi� �	

���i�E	� f̃� +
�


���i�E
� f̃�
 , �20�

E��f� = �
i=0

�

�− 1�i di

dsi� �	

���i�E	� f̃� +
�


���i�E
� f̃�
 , �21�

where f̃ is the transformed f �similar expressions hold for �
as in the usual case of Lagrangians involving higher-order
derivatives�.

III. EXAMPLES

We illustrate the above theory by several examples.
The anisotropic Kirchhoff rod �7�. Let the curvature ��s�

and torsion ��s� define the centerline r�s� of the rod �up to
Euclidean motions�. Assuming a noncircular cross-section
with bending stiffnesses A and B and torsional stiffness C,
we can write the elastic energy density as �22�

f��,�,�,��� = �a + b cos 2���2 + c�� + ���2, �22�

where a= �A+B� /4, b= �B−A� /4, c=C /2, and � is the twist
angle describing the rotation of the local material frame with
respect to the Frenet frame about the tangent vector t=r�.
With � playing the role of �1, Eqs. �4� and �5� then give,
respectively,

Mb = ��f = 2�a + b cos 2��� , �23�

Mt = ��f = C�� + ��� �24�

and

c��� + ��� + b�2 sin 2� = 0. �25�

Equations �3� and �23�–�25� constitute a system of
differential-algebraic equations �DAEs� that can be turned
into a system of ODEs by the differentiation of the algebraic

equations. For an isotropic rod �A=B�, the coefficient b van-
ishes and a combination of Eqs. �25� and �24� gives the first
integral Mt¬ c̄=const, which allows the system to be inte-
grated in closed form. In this case, the equation for the angle
� fully decouples from the other equations and the centerline
of the isotropic rod can be found as a minimizer of the func-
tional f =a�2+ c̄� with a linear torsion term �7�. On the other
hand, the functional f = 1

2A�2+ 1
2C�2 with quadratic torsion

was proposed to model elastic strips and polymer chains
�23,24�. It may be formally obtained from Eq. �22� by push-
ing one of the bending stiffnesses B to infinity �implying �
→
 /2�. Rods described by this functional bend only about a
single principal axis and therefore have their material frame
locked to the Frenet frame.

For a bundle of parallel thin rods of circular cross-section
of radius R, the normalized bending energy density may be
shown to equal �25�

f = �1 − �1 − R2�2� , �26�

which provides another example of an invariant functional
�26�. Grason �27� gives extensions to more complicated
functionals for parallel bundles to which our proposition can
be applied to derive equilibrium equations.

The Helfrich rod. In order to study chiral effects in poly-
mers, Helfrich proposed the following elastic energy density
with higher-order terms included �3�:

f = f��,�,��� =
k2

2
�2 + k3�2� +

k22

4
�4 +

k4

2
���2 + �2�2� ,

�27�

where k2 ,k3 ,k22,k4 are constant coefficients. For this func-
tional, Eq. �4� becomes

Mb = k2� + 2k3�� + k22�
3 + k4��2 − k4��, �28�

Mt = k3�2 + k4�2� . �29�

These are the nonlinear constitutive equations for the Hel-
frich rod �expressed in the Frenet frame�. The second equa-
tion is algebraic and can be used to eliminate the torsion �.
The first equation is then a differential equation for � that is
to be solved in conjunction with the balance equations. The
Helfrich functional has been extended to the sixth order, in-
volving the first derivative of torsion and the second deriva-
tive of curvature �28�.

A rod lying in a surface. The proposition can also be used
in problems of curves with constraints such as the constraint
for a rod to lie in a surface. If this surface constraint is given
by the pointwise condition 0=g�� ,� ,� ,�� ,�� ,�� , . . .��Rm,
��Rm−1, for certain m, then we consider the new functional
f +��s� ·g with ��s��Rm as a Lagrange multiplier.

The simplest example is that of a rod in a plane. One may
constrain the centerline r= �x ,y ,z� to a plane by imposing,
for instance, z=0, as in �29�, but this constraint is not Eu-
clidean invariant and therefore not of the type g above. A
Euclidean invariant form is simply �=0. We can account for
this constraint by modifying the function in Eq. �22� and
considering f1= f +��s�� �hence �1=�, �2=��. Equation �23�
does not change while Eq. �24� now becomes Mt=C��
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+���+� and may be used to find the reaction �. The binor-
mal force component is constant by virtue of Eq. �17�. The
remaining five Eqs. �15�, �16�, and �9�–�11� plus Eq. �25�
with ��0 and � substituted from Eq. �23� form a system of
six differential equations for the six variables
Mt ,Mn ,Mb ,Ft ,Fn ,�.

Note that the reaction � has the interpretation of a mo-
ment about the tangential direction. The constraint may
therefore be realized by applying a distributed twisting
couple of the same magnitude. It may be approximated by a
rod with multiple �in the limit distributed� small whiskers
perpendicular to the centerline �not unlike a caterpillar�. If
we imagine placing such a hairy rod between two parallel
friction-free plates so that the rod itself would not get in
touch with the plates then the normal reaction forces would
give the required couples.

This way of realizing the constraint differs of course from
the usual one corresponding to the z=0 condition, where the
reactions are distributed normal forces exerted by the plates
onto the rod �29�. Anyway, if one is only interested in the
configuration of the rod then the realization of the constraint
does not matter. In particular, for the isotropic rod the equa-
tions in both cases reduce to those of the Euler elastica, ��
+ 1

2�3=0, corresponding to the functional f =�2.
The Helfrich rod can be similarly constrained to the plane

by introducing the condition �=0. A more direct way to ob-
tain the reduced functional is to delete the torsion terms in
the right-hand side of Eq. �27� to obtain f = 1

2k2�2+ 1
4k22�

4

+ 1
2k4��2 and consider the problem in R2. This functional

may be useful for studying polymers synthesized at the in-
terface of two fluids. It may also have an application in com-
puter vision. In this field, the functional f =��2 has been pro-
posed for shape completion �30�. The Euler-Lagrange
equation for this functional, ��+�2��− 1

2���2=0, follows
directly from Anderson’s Eq. �6� �9� �the equation in �30� is
incorrect�. Functionals that involve the torsion may be of
interest when one deals with the completion of space curves
reconstructed from their planar projections.

Rods confined to a cylinder are relevant for buckling in-
side tubes and for supercoiled filaments and have been stud-
ied by imposing the coordinate constraint x2+y2=R2, where
R is the radius of the cylinder �5�. A Euclidean invariant form
of the constraint involves two conditions �31�,

g1 ª �2 − �0
2 cos4 � − ��2 = 0,

g2 ª ��� − ���� + �0� cos2 ���0 sin � cos � − �� = 0,

�30�

where �0
−1=R and ��s� is an unknown function that is to be

found as part of the solution. The modified functional f
+�1�s�g1+�2�s�g2 is of the required form in Eq. �2� �with
�1=�1 , �2=�2 , �3=�� and the Euler-Lagrange equations
follow from the proposition.

Inextensible strips. An inextensible strip is a thin shell that
deforms by pure bending �no stretching�. Its surface is there-
fore developable and has a single nonzero principal curvature
�1. The normalized bending energy for a rectangular strip of
length L and width 2w can be reduced to a single integral
over the strip’s centerline �32,6�,

�
0

L �
−w

w

�1
2�s,t�dtds = w�

0

L

f��,
,
��ds ,

f��,
,
�� = �2�1 + 
2�2 1

w
�
log	1 + w
�

1 − w
�

 , �31�

where 
=� /�. In the limit w→0, this recovers Sadowsky’s
functional f�� ,
�=2�2�1+
2�2 given in �12� where Eq. �4�
for this case is obtained by applying the principle of virtual
work and making use of the variation of the Frenet frame.
Since the energy density f depends on derivatives of the
curvature only via 
, it is convenient to apply the transfor-
mation 	=�, 
=� /�. Equations �20� and �21� then yield
Mb=E��f�− 


�E
�f�, Mt=
1
�E
�f�. Note that E��f�=��f and

hence Mb+
Mt=��f . These equations were first derived in
�6�. The complexity of the centerline-reduced functional
f�� ,
 ,
�� makes this the first problem for which the invari-
ant formulation seems to be the only way to obtain a man-
ageable set of equilibrium equations. Their extension to in-
trinsically curved strips was considered in �4�.

The balance equations presented here correspond to the
conservation laws generated by the symmetry group of Eu-
clidean motions �13�. A computational procedure for deriv-
ing invariant Euler-Lagrange equations �analogous to Eqs.
�6� and �7�� for arbitrary finite-dimensional transformation
groups can be found in �10�. When given the balance form
these equations may be useful for certain problems with non-
Euclidean symmetry groups. An example is the description
of world lines of relativistic particles in Minkowski space
with the Poincaré group of isometries as symmetry group
�33,34�.
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